# bb in pp?

P. Dalpiaz, M. Fabbri and E. Luppi

### What do we know?

• Scarse and old literature, rough estimates:

Fine Bottomonium Spectroscopy in ppbar Annihilation, Proceedings of the Workshop on Nucleon-Antinucleon Interactions, (Moscow, ITEP, 8-11 July 1991) pag. 1486  $\frac{Br(b\overline{b} \to p\overline{p})}{Br(c\overline{c} \to p\overline{p})} \square \left(\frac{m_c}{m_b}\right)^{10} \square 10^{-4}$   $\frac{Br(b\overline{b} \to p\overline{p})}{Br(c\overline{c} \to p\overline{p})} \square \left(\frac{m_c}{m_b}\right)^{10} \square 10^{-5}$   $J^{PC} = 1^{--}, 1^{++}, 2^{++}$   $J^{PC} = 0^{-+}, 0^{++}, 1^{+-}$   $\sigma(p\overline{p} \to \gamma) \square 100pb$   $\sigma(p\overline{p} \to \chi_b) \square 10pb$ 

- Hopefully, new limits will be (soon) set
  - CLEO III  $\Upsilon(1,2,3S)$  →ppbar (≈ 10<sup>-6</sup>)
  - − CLEO-c  $\psi(3770)$  →ppbar (≈ 10<sup>-6</sup>)

From a presentation by Sandra Malvezzi to Villars SPSC meeting 09/2004

# bb in pp?

### A word of caution

- Many experimental challenges foreseen:
  - Luminosities about  $10^{32}$  will give ~10 Mhz hadronic rates
  - Detection of exclusive EM channels: very fast detectors, excellent e and  $\mu$  ID.
  - Narrow resonance width require ultracool pbar beams dP/P<10<sup>-4</sup>
- Machine requirements: interaction rate is high enough to require debunched beams
  - minicollider: 5+5 GeV ppbar collider with state of the art cooling
  - fixed target: storage of antiprotons with  $E_{beam} \sim 45$  to 55 GeV.

Acceleration or deceleration to the resonance energy

## Bottomonium from ppbar

#### Physics Goals:

- complements e+e- studies on such system.
- can measure more precisely masses and widths of P states
- unique alternative in etab searches

#### Physics challenges:

- Luminosities about 1.E32 will give ~10 Mhz hadronic rates:
- Detection of exclusive EM channels : very fast detectors, excellent electron + muon ID.
- Narrow resonance width require ultracool pbar beams dP/P<1.E-4
- Peak Cross Sections (detecting EM final states) will be:

Upsilons: ~0.1 pb (BRin/1.E-6)/(dP/P/1.E-4)

Chi-B: ~1 pb (BRin/1.E-6)

Eta-B: ~.05 pb (BRin/1.E-6) \* (BRout/1.E-3)

- ---> CLEO can measure BRin at 1.E-6 with currently available data 29 M Y(1S), 9 M Y(2S), 6 M Y(3S).
- ---> Dalpiaz et al: bbbar/ccbar  $\sim 10-4 => BR \sim 1.e-7$  or below.
- Machine requirements: interaction rate is high enough to require debunched beams

minicollider: 5+5 GeV ppbar collider with state of the art cooling

fixed target: storage of pbars with Ebeam ~ 45 to 55 GeV.

Acceleration or deceleration to the resonance energy